CSx25: Digital Signal Processing NCS224: Signals and Systems

Assignment no 02: Chapter 2

Note: You can check the exercises after the book Chapter. In our assignment, we are using the first edition of "Signals and Systems: A MATLAB Integrated Approach" By Oktay Alkin.

Problems

2.1. A number of systems are specified below in terms of their input-output relationships.

For each case, **determine** if the system is linear and/or time-invariant.

a.
$$y(t) = |x(t)| + x(t)$$

b. $y(t) = t x(t)$
c. $y(t) = e^{-t} x(t)$
d. $y(t) = \int_{-\infty}^{t} x(\lambda) d\lambda$

2.2. Consider the cascade combination of two systems shown in Fig. P.2.2(a).

$$x(t) \longrightarrow \underbrace{\operatorname{Sys}_1\{} w(t) \longrightarrow \underbrace{\operatorname{Sys}_2\{} w(t) \longrightarrow \underbrace{\operatorname{Sys}_2\{} w(t) \longrightarrow \underbrace{\operatorname{Sys}_2\{} w(t) \longrightarrow \underbrace{\operatorname{Sys}_1\{} w(t) \bigoplus \underbrace{Sys}_1w(t) \bigoplus \underbrace{Sys}_1w(t) \bigoplus \underbrace{Sys}_1w(t) \bigoplus \underbrace{Sys}_1w(t)$$

Figure P. 2.2

a. Let the input-output relationships of the two subsystems be given as

$$Sys_1 \{x(t)\} = 3 x(t)$$
 and $Sys_2 \{w(t)\} = w(t-2)$

Write the relationship between x(t) and y(t).

b. Let the order of the two subsystems be changed as shown in Fig. P.2.2(b).

Write the relationship between x(t) and $\overline{y}(t)$.

Does changing the order of two subsystems change the overall input-output relationship of the system?

2.3. Repeat Problem 2.2 with the following sets of subsystems:

b. Sys₁ {x(t)} = 3 x(t) and Sys₂ {w(t)} = w(t) + 5

2.22. Using the convolution integral, prove each of the relationships below:

a.
$$x(t) * \delta(t) = x(t)$$

b. $x(t) * \delta(t - t_0) = x(t - t_0)$

2.23. The impulse response of a CTLTI system is

$$h(t) = \delta(t) - \delta(t-1)$$

Determine sketch the response of this system to the triangular waveform shown in Fig. P.2.23.

Figure P. 2.23

2.26. For each pair of signals x(t) and h(t) given below, find the convolution y(t) = x(t)*h(t). In each case **sketch** the signals involved in the convolution integral and determine proper integration limits.

a.
$$x(t) = u(t)$$
, $h(t) = e^{-2t}u(t)$
c. $x(t) = u(t-2)$, $h(t) = e^{-2t}u(t)$
e. $x(t) = e^{-t}u(t)$, $h(t) = e^{-2t}u(t)$

2.30. The system shown in Fig. P.2.30 represents addition of echos to the signal x(t):

Figure P. 2.30

Comment on the system's

- a. Linearity
- **b.** Time invariance
- c. Causality
- d. Stability

2.31. For each system described below, **determine** if the system is causal and/or stable.

a.
$$y(t) = \text{Sys} \{x(t)\} = \int_{-\infty}^{t} x(\lambda) d\lambda$$

b. $y(t) = \text{Sys} \{x(t)\} = \int_{t-T}^{t} x(\lambda) d\lambda$, $T > 0$
c. $y(t) = \text{Sys} \{x(t)\} = \int_{t-T}^{t+T} x(\lambda) d\lambda$, $T > 0$